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Left-flat spaces with non-diverging null geodesics? 

Garry Ludwig 
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada 1’6G 2G1 

Received 4 October 1982 

Abstract. One of the two classes of non-diverging algebraically special left-flat spaces 
found by Fette, Janis and Newman is generalised by allowing the (self-dual part of the) 
Weyl tensor to become algebraically general. Penrose‘s conformal approach is used, 
thereby allowing the desired asymptotic behaviour of the solutions to be prescribed from 
the outset. The ‘solutions‘ are, however, still subject to some ‘reduced equations’. For a 
specific choice of initial data at conformal null infinity these reduced equations simplify 
to Plebanski‘s second heavenly equation. 

1. Introduction 

Several years ago Fette et a1 (1977) obtained all non-diverging algebraically special 
left-flat spaces by means of the complexified spin-coefficient formalism. They found 
that the solutions split naturally into two classes, one for which the spin coefficient i 
was zero and the other for which it was not. In this paper we extend their first class 
(i = 0) by dropping the condition of algebraic speciality. However, the price we pay 
is that we are left with some ‘reduced equations’ which are, in general, difficult to solve. 

The approach we take is that of Penrose’s (1968) conformal method which has 
been used successfully several times before (see Ludwig 1976, 1978, 1980a, b) in the 
derivation of solutions to the Einstein equations in the real case. In particular, in one 
of these papers (Ludwig 1980b), the method was employed to find a further extension 
of Kundt’s (1961) generalisation of plane gravitational waves. One of the advantages 
of the conformal method is that the desired asymptotic behaviour of the solutions to 
be found may be prescribed at the very outset. Other advantages have been discussed 
previously (see, e.g., Ludwig 1980b). To find solutions we transform to a conformally 
related space M (by rescaling the metric), solve the Newman-Penrose equations there, 
using certain initial data defined at conformal null infinity, and then transform the 
result back to the original space M. 

This conformal technique works for complex spaces as well as it does for real ones. 
The Newman-Penrose formalism can also be used in the study of complex space-times 
with only minor changes. All quantities formerly real become complex and all pairs 
of variables that were formerly complex conjugates now become independent (see, 
e.g., Fette et a1 1977). Notationally, the bar denoting complex conjugation is replaced 
by a tilde. 

To solve the complex Einstein vacuum equations in general is, of course, as difficult 
as it is in the real case. However, if we look for left-flat solutions the problem becomes 
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tractable. A left-flat space, by definition, has a vanishing Ricci tensor and a self-dual 
Weyl tensor. The fact that the 'untilded' tetrad components qi of the Weyl tensor 
vanish simplifies the equations enormously and allows an explicit integration of most 
of the equations. In this paper we obtain the metric coefficients, the spin coefficients 
and the Weyl tensor components for a large class of left-flat spaces in a frame based 
on non-expanding null geodesics. Our 'solution' is still subject to some 'reduced 
equations' which, for a subclass, simplify to Plebanski's (1975) second heavenly 
equation. In the algebraically special case our frame may be so chosen that the reduced 
equations can be fully integrated. The resultant solution is the i = 0 class of Fette et 
a1 (1977). 

2. The choice of frame 

In this section we shall set up a frame consisting of a coordinate system, one coordinate 
being the conformal factor, and a null tetrad. This frame will not be unique. Instead 
we use the frame freedom to achieve certain simplifications. But it should be 
emphasised that a change in frame usually involves a change in the null geodesics on 
which our coordinate system will be based. Therefore the transformation formulae 
for the coordinates will appear quite complicated except at infinity. 

In Minkowski space null geodesics lying in parallel null hyperplanes all end up on 
the same generator N of conformal future null infinityy+. All geodesics of a particular 
null hyperplane reach the same point S of N. Actually, these null hyperplanes are 
null cones whose vertices lie on N and for which N is, in fact, one of the generators. 

With this in mind we repeat the argument of a previous paper (Ludwig 1980b) 
and consider a space, real for the time being, which has as part of its conformal 
boundary a line N on which the conformal factor 0 vanishes and on which $,a it 0. 
At a point S on N consider the null 'cone' generated by all the null geodesics arriving 
at S from the interior of the rescaled space h?. The tangent vector ca is defined for 
each such null geodesic up to a proportionality factor which depends on the geodesic. 
Corresponding to each I? at S choose another null vector ii" satisfying &f" = 1 and 

(2.1) 

for some function KO also depending on the geodesic. It turns out that for vanishing 
Ricci tensor KO also vanishes. Hence rial, = -6,nln=o, and N is null. 

For each null geodesic arriving at the point S from the interior we define a tetrad 
{i", A a ,  k a, n* "} at S by choosing la and ii" as just described and A a (and hence k ") 
arbitrarily. Propagating these tetrads parallelly into the interior of M along their 
respective geodesics defines at each interior point (at least near N )  precisely one 
tetrad. As a result of the parallel propagation of the tetrad the spin coefficients K, E ,  

T vanish identically. 
Since each tangent vector k*" is hypersurface orthogonal c, and $,U must be 

proportional for some function U labelling the hypersurfaces. If this proportionality 
constant is set equal to one by using up some of the frame freedom we have 

0" *,nln=o = K k, - t i ,  

A A  

k, = V,u 

and 
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On the two-surface of intersection of an n=constant  # O  hypersurface with a U = 
constant hypersurface we select two coordinates x and y (or 5 and where 5 = -x + iy ) 
and propagate these along the geodesics. We demand that the choice be such that 
n8r1ns~ = 0, n&/n=o = 0. Choosing the conformal factor as one of the coordinates 
completes the definition of our coordinate system (U, 0, I, f ) .  

From equations (2.1)-(2.3) and the definition of the coordinates t and f i t  follows 
that 

,.- 
& = , $ u = ; u = ~ ( = D [ = O  6 u  = 1 

and, on N, 

Bfl=-l $n= ;n= 0 hl = K". 
Hence 

,. - a  A a - a  * 2 a  , . 3 a  
an au an a i  ay  

a y a  , .3a  e , . a  c 2 a  ;a 
,$=G-+[ -+[ -- S=W-+[ -+[ -- an ay a i  an a i  a i  

D = f -  A = - + U u - + X  - + X  -- 

with f+-l ,  4 '0, e +0, f i + K o  as 0 -0 .  This defines the metric variables f ,  6, 
d, g', g', 2, i3, fi, $',p". For the real case discussed at present, the relations 
2' = i3, i2 = f' and l =  8' hold, but they will disappear upon complexification. 

Since we are looking for divergence-free spaces we assume that the uncareted spin 
coefficient p vanishes or, equivalently, that p̂  = -fn-'. By means of some of the 
remaining frame freedom we can set f =  -1. Therefore, d = +/an and p* = K'. 

Finally, defining 

p(U, i, h = ?nln=o 

and using up some more frame freedom we make P real. Near N ,  

d= Pn-lalai 6 =Pn-'a/aC 
Note further that at the tip of each cone we must have d = $ = 0. 

The remaining freedom in the choice of frame is as follows. 
(i) We can relabel the cones by u ' = y ( u )  provided this is accompanied by a 

rescaling of the tetrad followed by a conformal change with parameters a and 0 
satisfying u 2  = 8 = y. (For the transformation formulae see, e.g., Ludwig 1976.) 

(ii) We can make a coordinate change 

i' = c'(<, U )  (and hence f '  = r' (f, U ) )  

provided we also change P and make a spatial rotation with parameter q5(u , ( , f )  
satisfying 

P' = P e2"ay'/ay 

e = (1 + RR)-' 

a c / m  = $9 

(and P' = P e-"*ar/af). 
(iii) We can make a conformal change n'= OR with 

where aR/an = 0, 

followed by a null rotation about la with parameter c subject to 

(and hence a E / m  = &) 

with c + O ,  E + O  as n-0. 
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The metric equations can now be worked out as usual by substituting the coordin- 
ates in the commutators of the Newman-Penrose (1962) formalism. They are 

Note that although not explicitly written down, the complex conjugates of equations 
(2.4) must also be considered. Thus, for example, 

A 1  D& =:+;;+n-’;. 

3. The rescaled left-flat space 

Upon complexification the discussion of § 2 goes through essentially unaltered. As 
usual, the bar over a variable is replaced by a tilde to emphasise that this new variable 
is independent of the original one. The equations at our disposal are as follows. 

(1) The Ricci identities (see Newman and Penrose 1962), e.g. 

& -62 = $($ f $) +6(7f+ 6) +?(;- E?) - 2  ( 3 9  + .;”) f 91 + G O ] .  

(2) The metric equations (2.4). 
(3) The transformation equations for the Ricci tensor (see Ludwig 1976), e.g. 

pol = fi3$01 + n2[6s”i~- $dn+ (E-i)s^n+2~h]. 

Again, it should be remembered that along with these equations we must consider 
their ‘tilded’ versions. 

Since in this paper we are looking for left-flat spaces the components (poo, (pol, 

(plo, etc, of the (‘uncareted’) Ricci tensor and the components of the Weyl 
tensor vanish. (Of course, the cfomponents Goo, etc, of the ‘careted’ Ricci tensor and 
the ‘tilded’ components 9, (or 9,) of the Weyl tensor are not zero in general.) This 
leads to considerable simplification making it possible to carry out to a large extent 
the integration of the abovementioned equations. However, we will still be left with 
a handful of ‘reduced equations’ which must be solved before an actual solution is 
obtained. The results of this straightforward but tedious calculation are as follows. 
For notational reasons we shall leave out all carets in this set of equations only. All 
variables involved refer, however, to the space conformally related to the left-flat 
space we are trying to find. 

(or 
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(3 .2)  
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B = RBG - dH 

H ' = G  T' = K 2 G .  

The variables po,  U"' , U'2', P, X ,  2, all functions of U ,  l, [, and the function 
G(u ,  R, 5, j) are subject to the 'reduced equations' 

o = a2 In P/agaf 0 =;U"' 0 = BA - i p o  
o = ~ p o - 2 ~ u " ' - i ~ o  

PP-l= U'" -/A O + lB(X/2P) + t i ( 2 / 2 P )  (3.5) 
o ( " - ~ '  = A o i o  - gBUi2'+po(po - U"') + ( 2 / 2 P ) i w 0 +  (X/2P)(dp0 - BU"') 

io = ~ o [ ~ " ' - 2 ~ o + $ . ( X / 2 P ) - ~ ( ~ / 2 P ) ] + ~ 2 U ( 2 ' - ( X / 2 P ) B h o  - ( 2 / 2 P ) i A o  

G = -UGf+(BG)' - idT-(X/2P)BG - ( 2 / 2 P ) i G  + G [ B ( X / 2 P ) - i ( J ? / 2 P ) - p o ] .  

The dot and prime refer to differentiation with respect to the coordinates U and R 
respectively. The differential operators 8 and 5 are defined by 

where s is the spin weight of q. 

4. Left-flat space 

Converting back to the actual left-flat space we are looking for, we introduce coordin- 
ates ( U ,  r, l, f) there as follows. The coordinates U, l, [ are the same as in the rescaled 
space. Since, as usual, we want D = a l a r  we determine the coordinate r from the 
equation 

a R / a r  = D O  = 0'60 = -a2. 
Therefore r = t2-l if the origin is suitably chosen. it should be remembered (see the 
appendix to Ludwig 1976) that in order to keep the tetrad parallelly propagated the 
conformal rescaling has to be followed by a null rotation of the tetrad about k".  It 
turns out that the parameters of this null rotation, c and E, must be -R-'BH and 
zero, respectively. The transformation formulae for the various variables of the 
Newman-Penrose formalism are standard (see Ludwig 1976). After some calculation 
we obtain the following final results. 

Metric coefficients 
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Spin coefficients 

and the subscript r denotes differentiation wit: respect to r. 
and X are subject to the 'reduced equations' 

given by equations (3.5). The last one of these, in terms of r and an 'uncareted' U, 
becomes 

The functions G, E o ,  fi"), f i ' 2 ) ,  P, 

G = -UG, + ( z ~ G ) ~  - iaT - (*/2P)aG - (k/2P)iG + G[8(&/2P) - i($/2P) -;'I. 
These final results can be (and have been) checked by direct substitution into the 

'uncareted' equations. In the case of vanishing G, i.e. the algebraically special case, 
they can also be deduced (with but a slight change in notation) from Ludwig (1980b) 
by setting the ?, equal to zero. 

From the metric variables we can calculate (see Newman and Penrose 1962) the 
contravariant metric tensor. It is given by 

1 0 

-4P2 

By matrix inversion we find 

1 gll  1 2PPZ g14 \ 

(gap) = l 1  &4p2 () O 0 -(4P2)-' O I  
0 



1188 G Ludwig 

where 
1 

gl1= -2U + (2P2)-'2( -GJi -2 + 4PZrG) 

g14 = -(4PZ)-'(-2G$-R+4PZrG). 

Therefore the metric is given by 

d s 2 = 2 d u  d r + g l l  du2+(2P2)- '2  d (du+2g14d tdu  

-(2P2)-' d l  d f -  (2P2)-'G, d p .  (4.5) 

5. Discussion 

There is still considerable freedom in the choice of frame. We can use part of it to 
make P equal to a constant. If we choose this constant to be 1 then 8 = a/a[ and = a/$. 

Let us consider the algebraically special case; then G vanishes. The 'reduced 
equations' (3.5) are now fairly easy to integrate. We can use the remaining frame 
freedom to eliminate a number of the 'constants' of integration. We can also arrange 
the frame so that f i 0  = 0"'. The details are straightforward. We find that 

(2) - - (2) 
6 0  = 0"' = 3 2  0 - U  (U,(). x 3 =-fZrR x2 = R ( u ,  [) 

The variables and 0") remain ar6itrary functions of the two coordinates U and l. 
Substitution of these values into equations (4.1)-(4.4) reduces the latter to the i = 0 
class of non-diverging left-flat spaces found by Fette et a1 (1977). (Note, however, 
that in the general case, with G # 0, the spin coefficient i does not vanish.) The 
remaining frame freedom is now as given in D 2, with 

(i) y restricted to be a linear function of U ; 
(ii) Q, l' and restricted by 

1 = eZi*aay'/ag = e-2i*ap/at; 

(iii) R restricted by 

R = c l f + r ( u )  

where c1 is a constant and r(u) is an arbitrary function of U. 
Finally, if in the general solution, equations (4.1)-(4.4), we take 

6 4  
p = p' = 1 p = x  =x = o  T = - 8  

then the metric, given by equation (4.5), becomes 

d s 2 = 2 d u  dr+(2-8etr)drt2-4ert du df-&I,, d p - i d i d f  

and the only surviving 'reduced equation' is Plebanski's (1975) 'second heavenly 
equation' 

4e,,ecs - 4(e,,)' + e,, - e,, - 4eci = 0. 

If we specialise further and take 8 = h/2S, where S = ur + U' -i lf  we obtain Sparling 
and Tod's (1981) 2t space, albeit in a frame different from the usual one. 
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